A posteriori error estimates for a multi-scale finite-element method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for Nonconforming Finite Element Schemes

We derive a posteriori error estimates for nonconforming discretizations of Poisson's and Stokes' equations. The estimates are residual based and make use of weight factors obtained by a duality argument. Crouzeix-Raviart elements on triangles and rotated bilinear elements are considered. The quadrilateral case involves the introduction of additional local trial functions. We show that their in...

متن کامل

A posteriori error estimates for the virtual element method

An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Uppe...

متن کامل

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

A Posteriori Error Estimates for the Mortar Mixed Finite Element Method

Several a posteriori error estimators for mortar mixed finite element discretizations of elliptic equations are derived. A residual-based estimator provides optimal upper and lower bounds for the pressure error. An efficient and reliable estimator for the velocity and mortar pressure error is also derived, which is based on solving local (element) problems in a higher-order space. The interface...

متن کامل

A two-dimensional moving finite element method with local refinement based on a posteriori error estimates

In this paper, we consider the numerical solution of time-dependent PDEs using a finite element method based upon rh-adaptivity. An adaptive horizontal method of lines strategy equipped with a posteriori error estimates to control the discretization through variable time steps and spatial grid adaptations is used. Our approach combines an r-refinement method based upon solving so-called moving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational and Applied Mathematics

سال: 2021

ISSN: 2238-3603,1807-0302

DOI: 10.1007/s40314-021-01426-5